Frequency & Phase of Trig Functions (DP IB Applications & Interpretation (AI)): Revision Note

Amber

Written by: Amber

Reviewed by: Dan Finlay

Updated on

Frequency & phase of trig functions

  • A sinusoidal function is related to an exponential function with a complex argument

  • You can rewrite a straight e to the power of b open parentheses x minus c close parentheses straight i end exponent in modulus-argument form

    • a straight e to the power of b open parentheses x minus c close parentheses straight i end exponent equals a cos open parentheses b open parentheses x minus c close parentheses close parentheses plus a isin open parentheses b open parentheses x minus c close parentheses close parentheses

  • The relevant sinusoidal function is the real or imaginary part of the exponential function

    • a cos open parentheses b open parentheses x minus c close parentheses close parentheses equals Re open parentheses a straight e to the power of b open parentheses x minus c close parentheses straight i end exponent close parentheses

    • a sin open parentheses b open parentheses x minus c close parentheses close parentheses equals Im open parentheses a straight e to the power of b open parentheses x minus c close parentheses straight i end exponent close parentheses

  • For example,

    • 3 cos open parentheses 2 x plus 5 close parentheses equals Re open parentheses 3 straight e to the power of open parentheses 2 x plus 5 close parentheses straight i end exponent close parentheses

    • 5 sin open parentheses 3 open parentheses x minus 2 close parentheses close parentheses equals Im open parentheses 5 straight e to the power of open parentheses 3 open parentheses x minus 2 close parentheses close parentheses straight i end exponent close parentheses

  • Complex numbers are particularly useful when working with electrical currents or voltages as these follow sinusoidal wave patterns

    • AC voltages may be given in the form V = a sin(bt + c) or V = a cos(bt + c)

How can I add two sinusoidal functions which have the same frequencies?

  • STEP 1
    Identify the two related exponential functions

    • e.g. for 10 cos open parentheses 2 x plus 5 close parentheses plus 15 cos open parentheses 2 x minus 3 close parentheses

      • use z subscript 1 equals 10 straight e to the power of open parentheses 2 x plus 5 close parentheses straight i end exponent and z subscript 2 equals 15 straight e to the power of open parentheses 2 x minus 3 close parentheses straight i end exponent

  • STEP 2
    Add the two functions together and factorise

    • e.g. 10 straight e to the power of open parentheses 2 x plus 5 close parentheses straight i end exponent plus 15 straight e to the power of open parentheses 2 x minus 3 close parentheses straight i end exponent equals 5 straight e to the power of 2 x straight i end exponent open parentheses 2 straight e to the power of 5 straight i end exponent plus 3 straight e to the power of negative 3 straight i end exponent close parentheses

  • STEP 3
    Convert the term in the bracket into a single complex number in Euler's form

    • Use your GDC to do this

      • e.g. 2 straight e to the power of 5 straight i end exponent plus 3 straight e to the power of negative 3 straight i end exponent equals 3.354 straight e to the power of 3.9152 straight i end exponent

  • STEP 4
    Simplify the whole expression and use the rules of indices to collect the powers

    • e.g. 5 straight e to the power of 2 x straight i end exponent open parentheses 3.354 straight e to the power of 3.9152 straight i end exponent close parentheses equals 16.77 straight e to the power of open parentheses 2 x plus 3.9152 close parentheses straight i end exponent

  • STEP 5
    Convert into polar form and take

    • only the imaginary part for sin

    • or only the real part for cos

      • e.g. 10 cos open parentheses 2 x plus 5 close parentheses plus 15 cos open parentheses 2 x minus 3 close parentheses equals 16.77 cos open parentheses 2 x plus 3.9152 close parentheses

Examiner Tips and Tricks

The frequency (coefficient of x) needs to be the same for this method to work, e.g. 2sin(3x + 1) can be added to 3sin(3x - 5) using this method but not 2sin(5x + 1).

Worked Example

Two AC voltage sources are connected in a circuit.  If V subscript 1 equals 20 sin invisible function application open parentheses 30 t close parenthesesand V subscript 2 equals 30 sin left parenthesis 30 t plus 5 right parenthesis find an expression for the total voltage in the form V equals A sin invisible function application open parentheses 30 t plus B close parentheses.                      

1-6-3-ib-ai-hl-applications-of-complex-numbers-we-solution

                                                                                                                

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Amber

Author: Amber

Expertise: Maths Content Creator

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.