Addition & Subtraction with Algebraic Fractions (SQA National 5 Maths): Revision Note

Exam code: X847 75

Roger B

Written by: Roger B

Reviewed by: Dan Finlay

Updated on

Adding & subtracting algebraic fractions

How do I add (or subtract) two algebraic fractions?

  • The rules for adding and subtracting algebraic fractions are the same as they are for fractions with numbers

  • STEP 1
    Find the lowest common denominator (LCD)

    • Sometimes the LCD can be found by multiplying the denominators together

      • E.g. The LCD for the fractions fraction numerator 1 over denominator x plus 2 end fraction and fraction numerator 1 over denominator x plus 5 end fraction is open parentheses x plus 2 close parentheses open parentheses x plus 5 close parentheses

      • Similarly, with numbers, the LCD of 1 half and 1 fifth is 2 × 5 = 10

    • Although multiplying the denominators will always give you a common denominator, it is not necessarily the lowest common denominator

      • E.g. The LCD for the fractions 1 over x and fraction numerator 1 over denominator 2 x end fraction is 2 x (not 2 x squared) as both terms already include an x

      • Similarly, with numbers, the LCD of 1 half and 1 fourth is just 4, not 2 × 4 = 8

    • Other examples include:

      • The LCD of fraction numerator 1 over denominator x plus 2 end fraction and fraction numerator 1 over denominator open parentheses x plus 2 close parentheses open parentheses x minus 1 close parentheses end fraction is open parentheses x plus 2 close parentheses open parentheses x minus 1 close parentheses

      • The LCD of fraction numerator 1 over denominator x plus 1 end fraction and 1 over open parentheses x plus 1 close parentheses squared is open parentheses x plus 1 close parentheses squared

      • The LCD of fraction numerator 1 over denominator open parentheses x plus 3 close parentheses open parentheses x minus 1 close parentheses end fraction and fraction numerator 1 over denominator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses end fraction is open parentheses x plus 3 close parentheses open parentheses x minus 1 close parentheses open parentheses x plus 4 close parentheses

  • STEP 2

    Write each fraction over the lowest common denominator

    Multiply the numerator of each fraction by the same amount as the denominator

    • E.g. table row cell fraction numerator x over denominator x minus 4 end fraction plus fraction numerator 1 over denominator x plus 2 end fraction end cell equals cell fraction numerator x open parentheses x plus 2 close parentheses over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction plus fraction numerator open parentheses x minus 4 close parentheses over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction end cell end table

  • STEP 3

    Write as a single fraction over the lowest common denominator and simplify the numerator

    • Do this by adding or subtracting the numerators

      • Take particular care with minus signs if subtracting

    • E.g. table row blank blank cell fraction numerator x open parentheses x plus 2 close parentheses plus open parentheses x minus 4 close parentheses over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction end cell end table equals fraction numerator x squared plus 2 x plus x minus 4 over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction equals fraction numerator x squared plus 3 x minus 4 over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction

  • STEP 4

    Check at the end to see if the top factorises and the fraction can be simplified

    • E.g. fraction numerator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses over denominator open parentheses x minus 4 close parentheses open parentheses x plus 2 close parentheses end fraction, the top factorises but there are no common factors so it is in its most simple form

Examiner Tips and Tricks

Leaving the top and bottom of your answer in factorised form will help you see if anything cancels at the end.

Worked Example

(a) Express fraction numerator 2 over denominator x plus 5 end fraction plus fraction numerator 3 over denominator x minus 1 end fraction comma space space x not equal to negative 5 comma space x not equal to 1 comma as a single fraction in its simplest form.

(b) Express fraction numerator 4 over denominator x minus 7 end fraction minus 3 over x comma space space x not equal to 7 comma space x not equal to 0 comma as a single fraction in its simplest form.

Answer:

Part (a)

The lowest common denominator is open parentheses x plus 5 close parentheses open parentheses x minus 1 close parentheses

  • Write each fraction over this common denominator

  • Remember to multiply the top of the fractions too

fraction numerator 2 open parentheses x minus 1 close parentheses over denominator open parentheses x plus 5 close parentheses open parentheses x minus 1 close parentheses end fraction plus fraction numerator 3 open parentheses x plus 5 close parentheses over denominator open parentheses x minus 1 close parentheses open parentheses x plus 5 close parentheses end fraction

Combine the fractions, as they now have the same denominator

fraction numerator 2 open parentheses x minus 1 close parentheses plus 3 open parentheses x plus 5 close parentheses over denominator open parentheses x plus 5 close parentheses open parentheses x minus 1 close parentheses end fraction

Simplify the numerator

fraction numerator 2 x minus 2 plus 3 x plus 15 over denominator open parentheses x plus 5 close parentheses open parentheses x minus 1 close parentheses end fraction

Collect like terms in the numerator

fraction numerator 5 x plus 13 over denominator open parentheses x plus 5 close parentheses open parentheses x minus 1 close parentheses end fraction

There are no additional terms which would cancel here, so this is the answer in simplest form

fraction numerator 5 x plus 13 over denominator open parentheses x plus 5 close parentheses open parentheses x minus 1 close parentheses end fraction

Part (b)

The lowest common denominator is x open parentheses x minus 7 close parentheses

  • Write each fraction over this common denominator

  • Remember to multiply the top of the fractions too

fraction numerator 4 x over denominator x open parentheses x minus 7 close parentheses end fraction minus fraction numerator 3 open parentheses x minus 7 close parentheses over denominator x open parentheses x minus 7 close parentheses end fraction

Combine the fractions, as they now have the same denominator

fraction numerator 4 x minus 3 open parentheses x minus 7 close parentheses over denominator x open parentheses x minus 7 close parentheses end fraction

Simplify the numerator

  • Be careful expanding with negative signs

fraction numerator 4 x minus 3 x plus 21 over denominator x open parentheses x minus 7 close parentheses end fraction

Collect like terms in the numerator

fraction numerator x plus 21 over denominator x open parentheses x minus 7 close parentheses end fraction

There are no additional terms which would cancel here, so this is the answer in simplest form

fraction numerator x plus 21 over denominator x open parentheses x minus 7 close parentheses end fraction

Examiner Tips and Tricks

For the purpose of adding and subtracting algebraic fractions in questions like the Worked Example, you can disregard conditions like "x not equal to negative 5 comma space x not equal to 1" and "x not equal to 7 comma space x not equal to 0".

Those are just there to make sure that the denominators of the fractions can never be equal to zero.

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Roger B

Author: Roger B

Expertise: Maths Content Creator

Roger's teaching experience stretches all the way back to 1992, and in that time he has taught students at all levels between Year 7 and university undergraduate. Having conducted and published postgraduate research into the mathematical theory behind quantum computing, he is more than confident in dealing with mathematics at any level the exam boards might throw at you.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.