Solving Quadratics by Factorising (Edexcel GCSE Maths): Revision Note
Exam code: 1MA1
Solving quadratics by factorising
How do I solve a quadratic equation using factorisation?
Rearrange it into the form ax2 + bx + c = 0
Zero must be on one side
It is easier if you rearrange so that a is positive
Factorise the quadratic and solve each bracket equal to zero
If (x + 4)(x - 1) = 0, then either x + 4 = 0 or x - 1 = 0
Because if two things multiply together to give zero,
then one or the other of them must be equal to zero
To solve
…solve first bracket = 0:
x – 3 = 0
add 3 to both sides: x = 3
…and solve second bracket = 0
x + 7 = 0
subtract 7 from both sides: x = -7
The two solutions are x = 3 or x = -7
The solutions in this example are the numbers in the brackets, but with opposite signs
What if there are numbers in front of the x's in the brackets?
The process is the same
There's a bit more work to find the solutions
You can't just write down the answers by changing the signs
To solve
…solve first bracket = 0
2x – 3 = 0
add 3 to both sides: 2x = 3
divide both sides by 2: x =
…solve second bracket = 0
3x + 5 = 0
subtract 5 from both sides: 3x = -5
divide both sides by 3: x =
The two solutions are x =
or x =
What if x is a factor?
The process is the same
Just be sure to handle the x correctly
That 'x as a factor' gives one of the solutions
To solve
it may help to think of x as (x – 0) or (x)
…solve first bracket = 0
(x) = 0, so x = 0
…solve second bracket = 0
x – 4 = 0
add 4 to both sides: x = 4
The two solutions are x = 0 or x = 4
It is a common mistake to divide (cancel) both sides by x at the beginning
If you do this you will lose a solution (the x = 0 solution)
Examiner Tips and Tricks
Your calculator might be able to solve quadratics. If it does, then you can use this to help you to factorise the quadratic.
For example, a calculator gives solutions to as
and
. You can rearrange these solutions to get zero on one side,
and
. The left-hand side expressions are two factors,
.
Worked Example
(a) Solve by factorising.
Answer:
Factorise the left-hand side
(x – 2)(x + 5)=0
Set the first bracket equal to zero
x – 2 = 0
Add 2 to both sides
x = 2
Set the second bracket equal to zero
x + 5 = 0
Subtract 5 from both sides
x = -5
Write both solutions together using “or”
x = 2 or x = -5
(b) Solve by factorising.
Answer:
Factorise the left-hand side
x(5x - 1)=0
Do not divide both sides by x (this will lose a solution at the end)
Set the first bracket equal to zero
(x) = 0
Solve this equation to find x
x = 0
Set the second bracket equal to zero
5x - 1 = 0
Add 1 to both sides
5x = 1
Divide both sides by 5
x =
Write both solutions together using “or”
x = 0 or x =
Unlock more, it's free!
Was this revision note helpful?