Compound Interest (WJEC GCSE Maths & Numeracy (Double Award)): Revision Note

Exam code: 3320

Compound interest

What is compound interest?

  • Compound interest is where interest is calculated on the running total, not just the starting amount

    • This is different from simple interest where interest is only based on the starting amount

  • E.g. £ 100 earns 10% interest each year, for 3 years

    • At the end of year 1, 10% of £ 100 is earned

      • The total balance will now be 100+10 = £ 110

    • At the end of year 2, 10% of £ 110 is earned

      • The balance will now be 110+11 = £ 121

    • At the end of year 3, 10% of £ 121 is earned

      • The balance will now be 121+12.1 = £ 133.10

How do I calculate compound interest?

  • Compound interest increases an amount by a percentage and then increases the new amount by the same percentage

    • This process repeats each time period (yearly or monthly etc)

  • We can use a multiplier to carry out the percentage increase multiple times

    • To increase £ 300 by 5% once, we would find 300×1.05

    • To increase £ 300 by 5%, each year for 2 years, we would find (300×1.05)×1.05

      • This could be rewritten as 300×1.052

    • To increase £ 300 by 5%, each year for 3 years, we would find ((300×1.05)×1.05)×1.05

      • This could be rewritten as 300×1.053

  • This can be extended to any number of periods that the interest is applied for 

    • If £ 2000 is subject to 4% compound interest each year for 12 years

    • Find 2000×1.0412, which is £ 3202.06

  • Note that this method calculates the total balance at the end of the period, not the interest earned

Compound interest formula

  • An alternative method is to use the following formula to calculate the final balance

    • Final balance = P open parentheses 1 plus r over 100 close parentheses to the power of n space end exponent where

      • P is the original amount,

      • r is the % increase,

      • and n is the number of years

    • Note that 1 plus r over 100 is the same value as the multiplier

      • e.g. 1.15 for 15% interest

  • This formula is not given in the exam

What if there are different rates of interest?

  • Instead of applying the same percentage for n years, banks may offer different rates

    • E.g. 3 percent sign for 2 years and then 2 percent sign for 1 year

  • Treat the periods under different rates as separate calculations

  • For example if a sum of £ 500 earns 4% interest for 2 years, and then 2.5% for 1 year

    • For the first period

      • 500×1.042 = 540.80

    • For the second period

      • 540.80 × 1.025 = 554.32

    • So the total amount is now £ 554.32 at the end of the 3 years

How do I solve reverse compound interest problems?

  • You could be told the final balance after compound interest has been applied, and need to find the original amount

    • This could be referred to as a "reverse compound interest" problem

  • For example if:

    • The final balance is £432

    • After 20% interest has been applied each year

    • For 3 years

  • Using the same method as above, this can be written as an equation:

    • 432 equals P cross times 1.20 cubed where P is the original amount

    • Solve for P,

      • Divide both sides by 1.20 cubed

      • table row cell 432 divided by 1.20 cubed end cell equals P end table

      • P equals £ 250

  • In general, to find the original amount:

    • Divide the final amount by m to the power of n where

      • m is the multiplier for the time period

      • and n is the number of time periods (usually years)

Examiner Tips and Tricks

Double check if the question uses simple interest or compound interest.

The formula for compound interest is not given in the exam.

Worked Example

Jasmina invests £ 1200 in a savings account, which pays compound interest at the rate of 4% per year for 7 years.

To the nearest pound, what is her investment worth at the end of the 7 years?

Answer:

Method 1

We want an increase of 4% per year
This is equivalent to a multiplier of 1.04, or 104% of the original amount

This multiplier is applied 7 timescross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 space equals space 1.04 to the power of 7

Therefore the final value after 7 years will be

1200 cross times 1.04 to the power of 7 equals 1579.118135...

Round to the nearest pound

£1579

Method 2
Using the formula for the final amount   P open parentheses 1 plus r over 100 close parentheses to the power of n space end exponent
Substitute P is 1200, r = 4 and n = 7 into the formula 

1200 open parentheses 1 plus 4 over 100 close parentheses to the power of 7

£1579

Worked Example

Martin invested£ n in an account for 3 years at a rate of 3.9%.

At the end of the 3 years the balance of the account is £ 3925.67.

Find the value of n to the nearest pound.

Answer:

n is increased by 3.9% for 3 years, resulting in 3925

Write an equation describing this

n cross times 1.039 cubed equals 3925.67

Divide both sides by 1.039 cubed

n equals fraction numerator 3925.67 over denominator 1.039 cubed end fraction

Work this out on your calculator

n equals 3499.992764...

Round to the nearest pound

n equals 3500

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Jamie Wood

Author: Jamie Wood

Expertise: Maths Content Creator

Jamie graduated in 2014 from the University of Bristol with a degree in Electronic and Communications Engineering. He has worked as a teacher for 8 years, in secondary schools and in further education; teaching GCSE and A Level. He is passionate about helping students fulfil their potential through easy-to-use resources and high-quality questions and solutions.

Mark Curtis

Reviewer: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.