Differentiating Reciprocal Trigonometric Functions (DP IB Analysis & Approaches (AA)): Revision Note

Differentiating Reciprocal Trigonometric Functions

What are the reciprocal trigonometric functions?

  • Secant, cosecant and cotangent and abbreviated and defined as

                          sec space x equals fraction numerator 1 over denominator cos space x end fraction          cosec space x equals fraction numerator 1 over denominator sin space x end fraction          cot space x equals fraction numerator 1 over denominator tan space x end fraction

  • Remember that for calculus, angles need to be measured in radians

    • theta may be used instead of x

  • cosec space x is sometimes further abbreviated to csc space x

What are the derivatives of the reciprocal trigonometric functions?

  • f left parenthesis x right parenthesis equals sec space x

    • f apostrophe left parenthesis x right parenthesis equals sec space x space tan space x

  • f left parenthesis x right parenthesis equals cosec space x

    • f apostrophe left parenthesis x right parenthesis equals negative cosec space x space cot space x

  • f left parenthesis x right parenthesis equals cot space x

    • f apostrophe left parenthesis x right parenthesis equals negative cosec squared space x

  • These are given in the formula booklet

How do I show or prove the derivatives of the reciprocal trigonometric functions?

  • For y equals sec space x

    • Rewrite, y equals fraction numerator 1 over denominator cos space x end fraction

    • Use quotient rule, fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator cos space x left parenthesis 0 right parenthesis minus left parenthesis 1 right parenthesis left parenthesis negative sin space x right parenthesis over denominator cos squared space x end fraction

    • Rearrange, fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator sin space x over denominator cos squared space x end fraction

    • Separate, fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator 1 over denominator cos space x end fraction cross times fraction numerator sin space x over denominator cos space x end fraction

    • Rewrite, fraction numerator straight d y over denominator straight d x end fraction equals sec space x space tan space x

  • Similarly, for y equals cosec space x

    • y equals fraction numerator 1 over denominator sin space x end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator sin space x left parenthesis 0 right parenthesis minus left parenthesis 1 right parenthesis cos space x over denominator sin squared space x end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator negative cos space x over denominator sin squared space x end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals negative fraction numerator 1 over denominator sin space x end fraction cross times fraction numerator cos space x over denominator sin space x end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals negative cosec space x space cot space x

What do the derivatives of reciprocal trig look like with a linear functions of x?

  • For linear functions of the form ax+b

    • f left parenthesis x right parenthesis equals sec open parentheses a x plus b close parentheses

      • f apostrophe left parenthesis x right parenthesis equals a space sec space open parentheses a x plus b close parentheses space tan space open parentheses a x plus b close parentheses

    • f left parenthesis x right parenthesis equals cosec space left parenthesis a x plus b right parenthesis

      • f apostrophe left parenthesis x right parenthesis equals negative a space cosec space left parenthesis a x plus b right parenthesis space cot space open parentheses a x plus b close parentheses

    • f left parenthesis x right parenthesis equals cot space left parenthesis a x plus b right parenthesis

      • f apostrophe left parenthesis x right parenthesis equals negative a space cosec squared space left parenthesis a x plus b right parenthesis

    • These are not given in the formula booklet

      • they can be derived from chain rule

      • they are not essential to remember

Examiner Tips and Tricks

  • Even if you think you have remembered these derivatives, always use the formula booklet to double check

    • those squares and negatives are easy to get muddled up!

  • Where two trig functions are involved in the derivative be careful with the angle multiple;  x comma space 2 x comma space 3 x, etc

    • An example of a common mistake is differentiating y equals c o s e c space 3 x

      • fraction numerator d y over denominator d x end fraction equals negative 3 italic space c o s e c space x space c o t space 3 x  instead of   fraction numerator d y over denominator d x end fraction equals negative 3 space c o s e c space 3 x space c o t space 3 x

Worked Example

Curve C has equation y equals 2 cot open parentheses 3 x minus pi over 8 close parentheses.

a) Show that the derivative of cot space x is negative cosec squared space x.

5-8-3-ib-hl-aa-only-we1a-soltn

b)       Find fraction numerator straight d y over denominator straight d x end fraction for curve C.

5-8-3-ib-hl-aa-only-we1b-soltn

c)       Find the gradient of curve C at the point where x equals fraction numerator 7 pi over denominator 24 end fraction.

5-8-3-ib-hl-aa-only-we1c-soltn

You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Did this page help you?

Paul

Author: Paul

Expertise: Maths Content Creator

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.