Differentiating Reciprocal Trigonometric Functions (DP IB Analysis & Approaches (AA)): Revision Note

Differentiating reciprocal trigonometric functions

What are the reciprocal trigonometric functions?

  • Secant, cosecant and cotangent are abbreviated and defined as

sec space x equals fraction numerator 1 over denominator cos space x end fraction           cosec space x equals fraction numerator 1 over denominator sin space x end fraction           cot space x equals fraction numerator 1 over denominator tan space x end fraction

  • Remember that for calculus, angles need to be measured in radians

    • theta may be used instead of x

  • cosec x is sometimes further abbreviated to csc x

What are the derivatives of the reciprocal trigonometric functions?

  • f left parenthesis x right parenthesis equals sec space x

    • f to the power of apostrophe left parenthesis x right parenthesis equals sec space x space tan space x

  • f left parenthesis x right parenthesis equals cosec space x

    • f to the power of apostrophe left parenthesis x right parenthesis equals negative cosec space x space cot space x

  • f left parenthesis x right parenthesis equals cot space x

    • f to the power of apostrophe left parenthesis x right parenthesis equals negative cosec squared space x

Examiner Tips and Tricks

These three derivatives are given in the exam formula booklet.

How do I show or prove the derivatives of the reciprocal trigonometric functions?

  • For y equals sec space x

    • Rewrite, y equals fraction numerator 1 over denominator cos space x end fraction

    • Use quotient rule, fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator cos space x left parenthesis 0 right parenthesis minus left parenthesis 1 right parenthesis left parenthesis negative sin space x right parenthesis over denominator cos squared space x end fraction

    • Rearrange, fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator sin space x over denominator cos squared space x end fraction

    • Separate, fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator 1 over denominator cos space x end fraction cross times fraction numerator sin space x over denominator cos space x end fraction

    • Rewrite, fraction numerator straight d y over denominator straight d x end fraction equals sec space x space tan space x

  • Similarly, for y equals cosec space x

    • y equals fraction numerator 1 over denominator sin space x end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator sin space x left parenthesis 0 right parenthesis minus left parenthesis 1 right parenthesis cos space x over denominator sin squared space x end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals fraction numerator negative cos space x over denominator sin squared space x end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals negative fraction numerator 1 over denominator sin space x end fraction cross times fraction numerator cos space x over denominator sin space x end fraction

    • fraction numerator straight d y over denominator straight d x end fraction equals negative cosec space x space cot space x

  • For the derivative of y equals cot x, see the Worked Example

What do the derivatives of reciprocal trig functions look like with linear functions of x?

  • For linear functions of the form ax+b

    • f left parenthesis x right parenthesis equals sec open parentheses a x plus b close parentheses

      • f to the power of apostrophe left parenthesis x right parenthesis equals a space sec space open parentheses a x plus b close parentheses space tan space open parentheses a x plus b close parentheses

    • f left parenthesis x right parenthesis equals cosec space left parenthesis a x plus b right parenthesis

      • f to the power of apostrophe left parenthesis x right parenthesis equals negative a space cosec space left parenthesis a x plus b right parenthesis space cot space open parentheses a x plus b close parentheses

    • f left parenthesis x right parenthesis equals cot space left parenthesis a x plus b right parenthesis

      • f to the power of apostrophe left parenthesis x right parenthesis equals negative a space cosec squared space left parenthesis a x plus b right parenthesis

    • These are not given in the exam formula booklet

      • they can be derived from chain rule

      • they are not essential to remember

Examiner Tips and Tricks

Even if you think you have remembered these derivatives, always use the formula booklet to double check. The squares and negatives are easy to get muddled up!

Where two trig functions are involved in the derivative be careful with angle multiples like x comma space 2 x comma space 3 x, etc. An example of a common mistake is differentiating y equals cosec 3 x, and getting space fraction numerator straight d y over denominator straight d x end fraction equals negative 3 cosec x cot 3 x space instead of space fraction numerator straight d y over denominator straight d x end fraction equals negative 3 cosec 3 x cot 3 x space.

Worked Example

Curve C has equation y equals 2 cot open parentheses 3 x minus pi over 8 close parentheses.

a) Show that the derivative of cot space x is negative cosec squared space x.

5-8-3-ib-hl-aa-only-we1a-soltn

b)       Find fraction numerator straight d y over denominator straight d x end fraction for curve C.

5-8-3-ib-hl-aa-only-we1b-soltn

c)       Find the gradient of curve C at the point where x equals fraction numerator 7 pi over denominator 24 end fraction.

5-8-3-ib-hl-aa-only-we1c-soltn

You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Paul

Author: Paul

Expertise: Maths Content Creator

Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams.

Dan Finlay

Reviewer: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.