Reciprocal Transformations (DP IB Analysis & Approaches (AA)): Revision Note

Dan Finlay

Written by: Dan Finlay

Reviewed by: Mark Curtis

Updated on

Reciprocal transformations

What is a reciprocal transformation?

  • For the graph y equals f open parentheses x close parentheses the reciprocal transformation is y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction

  • It transforms points on the graph y equals f open parentheses x close parentheses

    • by changing their y-coordinates

      • from a height of y to a height of 1 over y

  • All x-coordinates stay the same

    • Points that lie on the line y = 1 or the line y = -1 stay the same

Examiner Tips and Tricks

It helps to know, when sketching, that any points with y-coordinates of plus-or-minus 1 stay the same under a reciprocal transformation.

How do I sketch a reciprocal transformation y = 1/f(x)?

  • To sketch a reciprocal transformation, you need to know

    • how key features on the original graph y equals f open parentheses x close parentheses

      • transform to different key features on the graph of y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction

  • In general

    • the larger the heights of points on y equals f open parentheses x close parentheses

      • the closer to the x-axis they become on y equals fraction numerator 1 over denominator f open parentheses x close parentheses end fraction

      • and vice versa

    • If y equals f open parentheses x close parentheses is positive

      • then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction is positive

    • If y equals f open parentheses x close parentheses is negative

      • then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction is negative

    • If y equals f open parentheses x close parentheses is increasing

      • then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction is decreasing

    • If y equals f open parentheses x close parentheses is decreasing

      • then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction is increasing

  • More specifically

    • If y equals f open parentheses x close parentheses has a y-intercept at open parentheses 0 comma space c close parentheses where c not equal to 0

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a y-intercept at open parentheses 0 comma 1 over c close parentheses

    • If y equals f open parentheses x close parentheses has an x-intercept (root)at open parentheses a comma space 0 close parentheses

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a vertical asymptote at x equals a

    • If y equals f open parentheses x close parentheses has a vertical asymptote at x equals a

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a discontinuity at open parentheses a comma space 0 close parentheses

      • The discontinuity looks like a root when you sketch

    • If y equals f open parentheses x close parentheses has a local maximum at open parentheses x subscript 1 comma space y subscript 1 close parentheses where y subscript 1 not equal to 0

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a local minimum at open parentheses x subscript 1 comma 1 over y subscript 1 close parentheses

    • If y equals f open parentheses x close parentheses has a local minimum at open parentheses x subscript 1 comma space y subscript 1 close parentheses where y subscript 1 not equal to 0

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a local maximum at open parentheses x subscript 1 comma 1 over y subscript 1 close parentheses

    • If y equals f open parentheses x close parentheses has a horizontal asymptote at y equals k

      • if k not equal to 0 then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a horizontal asymptote at y equals 1 over k

      • if k equals 0 then y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction rightwards arrow plus-or-minus infinity

    • If y equals f open parentheses x close parentheses rightwards arrow plus-or-minus infinity as x rightwards arrow plus-or-minus infinity

      • y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction has a horizontal asymptote at y equals 0

Worked Example

The diagram below shows the graph of y equals f left parenthesis x right parenthesis which has a local maximum at the point A.

2-9-2-we-image

Sketch the graph of y equals fraction numerator 1 over denominator f left parenthesis x right parenthesis end fraction.

2-9-2-ib-aa-hl-reciprocal-trans-we-solution

You've read 0 of your 5 free revision notes this week

Unlock more, it's free!

Join the 100,000+ Students that ❤️ Save My Exams

the (exam) results speak for themselves:

Dan Finlay

Author: Dan Finlay

Expertise: Maths Subject Lead

Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.

Mark Curtis

Reviewer: Mark Curtis

Expertise: Maths Content Creator

Mark graduated twice from the University of Oxford: once in 2009 with a First in Mathematics, then again in 2013 with a PhD (DPhil) in Mathematics. He has had nine successful years as a secondary school teacher, specialising in A-Level Further Maths and running extension classes for Oxbridge Maths applicants. Alongside his teaching, he has written five internal textbooks, introduced new spiralling school curriculums and trained other Maths teachers through outreach programmes.