Integrating with Partial Fractions (DP IB Analysis & Approaches (AA)): Revision Note
Did this video help you?
Integrating with partial fractions
What are partial fractions?
Partial fractions arise when a quotient is rewritten as the sum of fractions
The process is the opposite of adding or subtracting fractions
Each partial fraction has a denominator which is a linear factor of the quotient’s denominator
e.g. A quotient with a denominator of
factorises to
so the quotient will split into two partial fractions
one with the (linear) denominator
one with the (linear) denominator
How do I know when to use partial fractions in integration?
For this course, the denominators of the quotient will be of quadratic form
i.e.
However check to see if the quotient can be written in the form
In this case, reverse chain rule applies
If the denominator does not factorise then the inverse trigonometric functions may be involved
How do I integrate using partial fractions?
STEP 1
Rewrite the quotient in the integrand as the sum of partial fractions
This involves factorising the denominator, writing it as an identity of two partial fractions and solving to find their numeratorse.g.
STEP 2
Integrate each partial fraction, leading to an expression involving the sum or difference of natural logarithmse.g.
STEP 3
Use the laws of logarithms to simplify the expression and/or apply the integration limits
(Simplifying first may make applying the limits easier)e.g.
By rewriting the constant of integration as a logarithm (
, say) it is also possible to write the final answer as a single term
e.g.
Examiner Tips and Tricks
Always check to see if the numerator can be written as the derivative of the denominator. If so then it is reverse chain rule, not partial fractions.
Use the number of marks a question is worth to help judge how much work should be involved.
Worked Example
Find .

You've read 0 of your 5 free revision notes this week
Unlock more, it's free!
Did this page help you?